统计绘图#
直方图#
使用 quad()
字形从 np.histogram
输出创建直方图
import numpy as np
from bokeh.plotting import figure, show
rng = np.random.default_rng()
x = rng.normal(loc=0, scale=1, size=1000)
p = figure(width=670, height=400, toolbar_location=None,
title="Normal (Gaussian) Distribution")
# Histogram
bins = np.linspace(-3, 3, 40)
hist, edges = np.histogram(x, density=True, bins=bins)
p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
fill_color="skyblue", line_color="white",
legend_label="1000 random samples")
# Probability density function
x = np.linspace(-3.0, 3.0, 100)
pdf = np.exp(-0.5*x**2) / np.sqrt(2.0*np.pi)
p.line(x, pdf, line_width=2, line_color="navy",
legend_label="Probability Density Function")
p.y_range.start = 0
p.xaxis.axis_label = "x"
p.yaxis.axis_label = "PDF(x)"
show(p)
人口金字塔图是一种发散的水平条形图,可用于比较两组之间的分布。在 Bokeh 中,可以使用 hbar()
字形创建它们。
import numpy as np
from bokeh.models import CustomJSTickFormatter, Label
from bokeh.palettes import DarkText, Vibrant3 as colors
from bokeh.plotting import figure, show
from bokeh.sampledata.titanic import data as df
sex_group = df.groupby("sex")
female_ages = sex_group.get_group("female")["age"].dropna()
male_ages = sex_group.get_group("male")["age"].dropna()
bin_width = 5
bins = np.arange(0, 72, bin_width)
m_hist, edges = np.histogram(male_ages, bins=bins)
f_hist, edges = np.histogram(female_ages, bins=bins)
p = figure(title="Age population pyramid of titanic passengers, by gender", height=400, width=600,
x_range=(-90, 90), x_axis_label="count")
p.hbar(right=f_hist, y=edges[1:], height=bin_width*0.8, color=colors[0], line_width=0)
p.hbar(right=m_hist * -1, y=edges[1:], height=bin_width*0.8, color=colors[1], line_width=0)
# add text to every other bar
for i, (count, age) in enumerate(zip(f_hist, edges[1:])):
if i % 2 == 1:
continue
p.text(x=count, y=edges[1:][i], text=[f"{age-bin_width}-{age}yrs"],
x_offset=5, y_offset=7, text_font_size="12px", text_color=DarkText[5])
# customise x-axis and y-axis
p.xaxis.ticker = (-80, -60, -40, -20, 0, 20, 40, 60, 80)
p.xaxis.major_tick_out = 0
p.y_range.start = 3
p.ygrid.grid_line_color = None
p.yaxis.visible = False
# format tick labels as absolute values for the two-sided plot
p.xaxis.formatter = CustomJSTickFormatter(code="return Math.abs(tick);")
# add labels
p.add_layout(Label(x=-40, y=70, text="Men", text_color=colors[1], x_offset=5))
p.add_layout(Label(x=20, y=70, text="Women", text_color=colors[0], x_offset=5))
show(p)
箱线图#
箱线图可以使用 Whisker
注释、vbar()
和 scatter()
字形组装
import pandas as pd
from bokeh.models import ColumnDataSource, Whisker
from bokeh.plotting import figure, show
from bokeh.sampledata.autompg2 import autompg2
from bokeh.transform import factor_cmap
df = autompg2[["class", "hwy"]].rename(columns={"class": "kind"})
kinds = df.kind.unique()
# compute quantiles
grouper = df.groupby("kind")
qs = grouper.hwy.quantile([0.25, 0.5, 0.75]).unstack().reset_index()
qs.columns = ["kind", "q1", "q2", "q3"]
# compute IQR outlier bounds
iqr = qs.q3 - qs.q1
qs["upper"] = qs.q3 + 1.5*iqr
qs["lower"] = qs.q1 - 1.5*iqr
# update the whiskers to actual data points
for kind, group in grouper:
qs_idx = qs.query(f"kind=={kind!r}").index[0]
data = group["hwy"]
# the upper whisker is the maximum between p3 and upper
q3 = qs.loc[qs_idx, "q3"]
upper = qs.loc[qs_idx, "upper"]
wiskhi = group[(q3 <= data) & (data <= upper)]["hwy"]
qs.loc[qs_idx, "upper"] = q3 if len(wiskhi) == 0 else wiskhi.max()
# the lower whisker is the minimum between q1 and lower
q1 = qs.loc[qs_idx, "q1"]
lower = qs.loc[qs_idx, "lower"]
wisklo = group[(lower <= data) & (data<= q1)]["hwy"]
qs.loc[qs_idx, "lower"] = q1 if len(wisklo) == 0 else wisklo.min()
df = pd.merge(df, qs, on="kind", how="left")
source = ColumnDataSource(qs)
p = figure(x_range=kinds, tools="", toolbar_location=None,
title="Highway MPG distribution by vehicle class",
background_fill_color="#eaefef", y_axis_label="MPG")
# outlier range
whisker = Whisker(base="kind", upper="upper", lower="lower", source=source)
whisker.upper_head.size = whisker.lower_head.size = 20
p.add_layout(whisker)
# quantile boxes
cmap = factor_cmap("kind", "TolRainbow7", kinds)
p.vbar("kind", 0.7, "q2", "q3", source=source, color=cmap, line_color="black")
p.vbar("kind", 0.7, "q1", "q2", source=source, color=cmap, line_color="black")
# outliers
outliers = df[~df.hwy.between(df.lower, df.upper)]
p.scatter("kind", "hwy", source=outliers, size=6, color="black", alpha=0.3)
p.xgrid.grid_line_color = None
p.axis.major_label_text_font_size="14px"
p.axis.axis_label_text_font_size="12px"
show(p)
核密度估计#
import numpy as np
from scipy.stats import gaussian_kde
from bokeh.palettes import Blues9
from bokeh.plotting import figure, show
from bokeh.sampledata.autompg import autompg as df
def kde(x, y, N):
xmin, xmax = x.min(), x.max()
ymin, ymax = y.min(), y.max()
X, Y = np.mgrid[xmin:xmax:N*1j, ymin:ymax:N*1j]
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([x, y])
kernel = gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)
return X, Y, Z
x, y, z = kde(df.hp, df.mpg, 300)
p = figure(height=400, x_axis_label="hp", y_axis_label="mpg",
background_fill_color="#fafafa", tools="", toolbar_location=None,
title="Kernel density estimation plot of HP vs MPG")
p.grid.level = "overlay"
p.grid.grid_line_color = "black"
p.grid.grid_line_alpha = 0.05
palette = Blues9[::-1]
levels = np.linspace(np.min(z), np.max(z), 10)
p.contour(x, y, z, levels[1:], fill_color=palette, line_color=palette)
show(p)
核密度估计也可以使用 varea()
字形绘制
import numpy as np
from sklearn.neighbors import KernelDensity
from bokeh.models import ColumnDataSource, Label, PrintfTickFormatter
from bokeh.palettes import Dark2_5 as colors
from bokeh.plotting import figure, show
from bokeh.sampledata.cows import data as df
breed_groups = df.groupby('breed')
x = np.linspace(2, 8, 1000)
source = ColumnDataSource(dict(x=x))
p = figure(title="Multiple density estimates", height=300, x_range=(2.5, 7.5), x_axis_label="butterfat contents", y_axis_label="density")
for (breed, breed_df), color in zip(breed_groups, colors):
data = breed_df['butterfat'].values
kde = KernelDensity(kernel="gaussian", bandwidth=0.2).fit(data[:, np.newaxis])
log_density = kde.score_samples(x[:, np.newaxis])
y = np.exp(log_density)
source.add(y, breed)
p.varea(x="x", y1=breed, y2=0, source=source, fill_alpha=0.3, fill_color=color)
# Find the highest point and annotate with a label
max_idx = np.argmax(y)
highest_point_label = Label(
x=x[max_idx],
y=y[max_idx],
text=breed,
text_font_size="10pt",
x_offset=10,
y_offset=-5,
text_color=color,
)
p.add_layout(highest_point_label)
# Display x-axis labels as percentages
p.xaxis.formatter = PrintfTickFormatter(format="%d%%")
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.minor_tick_line_color = None
p.xgrid.grid_line_color = None
p.yaxis.ticker = (0, 0.5, 1, 1.5)
p.y_range.start = 0
show(p)
SinaPlot#
SinaPlot 可以使用 harea()
和 scatter()
字形组装
import numpy as np
import pandas as pd
from sklearn.neighbors import KernelDensity
from bokeh.plotting import figure, show
from bokeh.sampledata.lincoln import data as df
df["DATE"] = pd.to_datetime(df["DATE"])
df["TAVG"] = (df["TMAX"] + df["TMIN"]) / 2
df["MONTH"] = df.DATE.dt.strftime("%b")
months = list(df.MONTH.unique())
p = figure(
height=400,
width=600,
x_range=months,
x_axis_label="month",
y_axis_label="mean temperature (F)",
)
# add a non-uniform categorical offset to a given category
def offset(category, data, scale=7):
return list(zip([category] * len(data), scale * data))
for month in months:
month_df = df[df.MONTH == month].dropna()
tavg = month_df.TAVG.values
temps = np.linspace(tavg.min(), tavg.max(), 50)
kde = KernelDensity(kernel="gaussian", bandwidth=3).fit(tavg[:, np.newaxis])
density = np.exp(kde.score_samples(temps[:, np.newaxis]))
x1, x2 = offset(month, density), offset(month, -density)
p.harea(x1=x1, x2=x2, y=temps, alpha=0.8, color="#E0E0E0")
# pre-compute jitter in Python, this case is too complex for BokehJS
tavg_density = np.exp(kde.score_samples(tavg[:, np.newaxis]))
jitter = (np.random.random(len(tavg)) * 2 - 1) * tavg_density
p.scatter(x=offset(month, jitter), y=tavg, color="black")
p.y_range.start = -10
p.yaxis.ticker = [0, 25, 50, 75]
p.grid.grid_line_color = None
show(p)
SPLOM#
SPLOM 是“散点图矩阵”,它以网格方式排列多个散点图,以突出显示维度之间的相关性。SPLOM 的关键组件是 链接平移 和 链接刷选,如本例所示
from itertools import product
from bokeh.io import show
from bokeh.layouts import gridplot
from bokeh.models import (BasicTicker, ColumnDataSource, DataRange1d,
Grid, LassoSelectTool, LinearAxis, PanTool,
Plot, ResetTool, Scatter, WheelZoomTool)
from bokeh.sampledata.penguins import data
from bokeh.transform import factor_cmap
df = data.copy()
df["body_mass_kg"] = df["body_mass_g"] / 1000
SPECIES = sorted(df.species.unique())
ATTRS = ("bill_length_mm", "bill_depth_mm", "body_mass_kg")
N = len(ATTRS)
source = ColumnDataSource(data=df)
xdrs = [DataRange1d(bounds=None) for _ in range(N)]
ydrs = [DataRange1d(bounds=None) for _ in range(N)]
plots = []
for i, (y, x) in enumerate(product(ATTRS, reversed(ATTRS))):
p = Plot(x_range=xdrs[i%N], y_range=ydrs[i//N],
background_fill_color="#fafafa",
border_fill_color="white", width=200, height=200, min_border=5)
if i % N == 0: # first column
p.min_border_left = p.min_border + 4
p.width += 40
yaxis = LinearAxis(axis_label=y)
yaxis.major_label_orientation = "vertical"
p.add_layout(yaxis, "left")
yticker = yaxis.ticker
else:
yticker = BasicTicker()
p.add_layout(Grid(dimension=1, ticker=yticker))
if i >= N*(N-1): # last row
p.min_border_bottom = p.min_border + 40
p.height += 40
xaxis = LinearAxis(axis_label=x)
p.add_layout(xaxis, "below")
xticker = xaxis.ticker
else:
xticker = BasicTicker()
p.add_layout(Grid(dimension=0, ticker=xticker))
scatter = Scatter(x=x, y=y, fill_alpha=0.6, size=5, line_color=None,
fill_color=factor_cmap('species', 'Category10_3', SPECIES))
r = p.add_glyph(source, scatter)
p.x_range.renderers.append(r)
p.y_range.renderers.append(r)
# suppress the diagonal
if (i%N) + (i//N) == N-1:
r.visible = False
p.grid.grid_line_color = None
p.add_tools(PanTool(), WheelZoomTool(), ResetTool(), LassoSelectTool())
plots.append(p)
show(gridplot(plots, ncols=N))