关联行为#

将多个绘图关联起来以增加它们之间的交互性通常很有用。本节介绍了一种使用 bokeh.plotting 接口实现此功能的简便方法。

关联平移#

通常需要跨多个绘图关联平移或缩放操作。启用此功能只需在 figure() 调用之间共享 range 对象即可。

from bokeh.layouts import gridplot
from bokeh.plotting import figure, show

x = list(range(21))
y0 = x
y1 = [20-xx for xx in x]
y2 = [abs(xx-10) for xx in x]

# create a new plot
s1 = figure(width=250, height=250, title=None)
s1.scatter(x, y0, size=10, color="navy", alpha=0.5)

# create a new plot and share both ranges
s2 = figure(width=250, height=250, x_range=s1.x_range, y_range=s1.y_range, title=None)
s2.scatter(x, y1, size=10, marker="triangle", color="firebrick", alpha=0.5)

# create a new plot and share only one range
s3 = figure(width=250, height=250, x_range=s1.x_range, title=None)
s3.scatter(x, y2, size=10, marker="square", color="olive", alpha=0.5)

p = gridplot([[s1, s2, s3]], toolbar_location=None)

show(p)

现在您已经学会了如何使用 bokeh.plotting 接口在多个绘图之间关联平移。

一个更复杂的关联散点图矩阵示例可以在 SPLOM 部分的 统计绘图 章节中找到。

关联刷选#

Bokeh 中的关联刷选通过在字形渲染器之间共享数据源来表达。这就是 Bokeh 理解在一个字形上执行的选择必须传递给所有其他共享相同数据源的字形所需的一切。要了解关联选择如何扩展到仅绘制来自数据源子集数据的字形渲染器,请参阅 使用过滤数据的关联选择

以下代码展示了在两个不同的 figure() 调用上,圆形字形之间进行关联刷选的示例

from bokeh.layouts import gridplot
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, show
from bokeh.sampledata.penguins import data
from bokeh.transform import factor_cmap

SPECIES = sorted(data.species.unique())

TOOLS = "box_select,lasso_select,help"

source = ColumnDataSource(data)

left = figure(width=300, height=400, title=None, tools=TOOLS,
              background_fill_color="#fafafa")
left.scatter("bill_length_mm", "body_mass_g", source=source,
             color=factor_cmap('species', 'Category10_3', SPECIES))

right = figure(width=300, height=400, title=None, tools=TOOLS,
               background_fill_color="#fafafa", y_axis_location="right")
right.scatter("bill_depth_mm", "body_mass_g", source=source,
              color=factor_cmap('species', 'Category10_3', SPECIES))

show(gridplot([[left, right]]))

下面的一个更复杂的示例演示了 DataTable 小部件和散点图之间的关联选择

from bokeh.layouts import column
from bokeh.models import (ColumnDataSource, DataTable, HoverTool, IntEditor,
                          NumberEditor, NumberFormatter, SelectEditor,
                          StringEditor, StringFormatter, TableColumn)
from bokeh.plotting import figure, show
from bokeh.sampledata.autompg2 import autompg2 as mpg

source = ColumnDataSource(mpg)

manufacturers = sorted(mpg["manufacturer"].unique())
models = sorted(mpg["model"].unique())
transmissions = sorted(mpg["trans"].unique())
drives = sorted(mpg["drv"].unique())
classes = sorted(mpg["class"].unique())

columns = [
    TableColumn(field="manufacturer", title="Manufacturer",
                editor=SelectEditor(options=manufacturers),
                formatter=StringFormatter(font_style="bold")),
    TableColumn(field="model", title="Model",
                editor=StringEditor(completions=models)),
    TableColumn(field="displ", title="Displacement",
                editor=NumberEditor(step=0.1), formatter=NumberFormatter(format="0.0")),
    TableColumn(field="year", title="Year", editor=IntEditor()),
    TableColumn(field="cyl", title="Cylinders", editor=IntEditor()),
    TableColumn(field="trans", title="Transmission",
                editor=SelectEditor(options=transmissions)),
    TableColumn(field="drv", title="Drive", editor=SelectEditor(options=drives)),
    TableColumn(field="class", title="Class", editor=SelectEditor(options=classes)),
    TableColumn(field="cty", title="City MPG", editor=IntEditor()),
    TableColumn(field="hwy", title="Highway MPG", editor=IntEditor()),
]
data_table = DataTable(source=source, columns=columns, editable=True, width=800,
                       index_position=-1, index_header="row index", index_width=60)

p = figure(width=800, height=300, tools="pan,wheel_zoom,xbox_select,reset", active_drag="xbox_select")

cty = p.scatter(x="index", y="cty", fill_color="#396285", size=8, alpha=0.5, source=source)
hwy = p.scatter(x="index", y="hwy", fill_color="#CE603D", size=8, alpha=0.5, source=source)

tooltips = [
    ("Manufacturer", "@manufacturer"),
    ("Model", "@model"),
    ("Displacement", "@displ"),
    ("Year", "@year"),
    ("Cylinders", "@cyl"),
    ("Transmission", "@trans"),
    ("Drive", "@drv"),
    ("Class", "@class"),
]
cty_hover_tool = HoverTool(renderers=[cty], tooltips=[*tooltips, ("City MPG", "@cty")])
hwy_hover_tool = HoverTool(renderers=[hwy], tooltips=[*tooltips, ("Highway MPG", "@hwy")])

p.add_tools(cty_hover_tool, hwy_hover_tool)

show(column(p, data_table))

关联十字准星#

在绘图之间关联十字准星工具是另一种可以帮助更容易地跨不同绘图进行比较的技术。在 Bokeh 中,可以使用共享的 Span 实例为其叠加层配置十字准星工具,这将导致这些十字准星链接在一起。下面对此进行了演示

from random import random

from bokeh.layouts import row
from bokeh.models import CrosshairTool, Span
from bokeh.plotting import figure, show

x = [random() * 10 for _ in range(200)]
y = [random() * 10 for _ in range(200)]

width = Span(dimension="width", line_dash="dashed", line_width=2)
height = Span(dimension="height", line_dash="dotted", line_width=2)

p1 = figure(height=400, width=400, x_range=(0, 10), y_range=(0, 10),
            tools="hover", toolbar_location=None)
p1.add_tools(CrosshairTool(overlay=[width, height]))
p1.circle(x, y, radius=0.2, alpha=0.3, hover_alpha=1.0)

p2 = figure(height=400, width=250, x_range=(0, 10), y_range=(0, 10),
            tools="hover", toolbar_location=None)
p2.add_tools(CrosshairTool(overlay=[width, height]))
p2.circle(x, y, radius=0.2, alpha=0.3, hover_alpha=1.0)

show(row(p1, p2))

关联属性#

还可以将 Bokeh 模型属性的值链接在一起,以便它们保持同步,使用 js_link() 方法。下面的示例将圆形字形半径链接到 Slider 小部件的值

from bokeh.layouts import column
from bokeh.models import Slider
from bokeh.plotting import figure, show

plot = figure(width=400, height=400)
r = plot.circle([1,2,3,4,5], [3,2,5,6,4], radius=0.2, alpha=0.5)

slider = Slider(start=0.1, end=2, step=0.01, value=0.2)
slider.js_link('value', r.glyph, 'radius')

show(column(plot, slider))

链接是在 JavaScript 中完成的,因此此方法在独立的 Bokeh 文档或 Bokeh 服务器应用程序中都有效。

有关不同小部件的更多信息,请参阅 Widgets 和 DOM 元素,有关创建任意 JavaScript 回调的更多信息,请参阅 JavaScript 回调